GABAergic and glycinergic IPSCs in ganglion cells of rat retinal slices.
نویسندگان
چکیده
GABAergic and glycinergic IPSCs were studied in identified retinal ganglion cells (RGCs) of light-adapted rat retinal slices, using whole-cell recording techniques. GABAergic IPSCs were blocked specifically by SR95531 (3 microM) and bicuculline (3 microM) and glycinergic IPSCs by strychnine (0.3 microM). From 37 RGCs studied, 25 showed exclusively GABAergic IPSCs, 6 presented only glycinergic IPSCs, and 6 showed both. This distribution may result from differences in amacrine cells input rather than from receptor heterogeneity, because both GABA and glycine elicited Cl--selective currents in all RGCs tested. TTX markedly reduced GABAergic IPSCs frequency, whereas glycinergic IPSCs were unaffected. Ca2+-free media, with or without high Mg2+, blocked TTX-resistant GABAergic and glycinergic IPSCs. These results suggest that GABAergic IPSCs in RGCs can be elicited either by Na+-dependent action potentials or by local Ca2+ influx in medium or large dendritic field GABAergic amacrine cells, whereas glycinergic IPSCs are generated by action potential-independent Ca2+ influx in narrow field glycinergic amacrine cells. Both types of IPSCs had fast rise times and biexponential decays, but glycinergic IPSC decay was significantly slower than that of GABAergic IPSCs. An elementary conductance of 54 pS for the glycine-gated channels was estimated from single-channel events, clearly detected in the falling phase of glycinergic IPSCs, and from responses to exogenous glycine.
منابع مشابه
Sodium action potentials are not required for light-evoked release of GABA or glycine from retinal amacrine cells.
Although most CNS neurons require sodium action potentials (Na-APs) for normal stimulus-evoked release of classical neurotransmitters, many types of retinal and other sensory neurons instead use only graded potentials for neurotransmitter release. The physiological properties and information processing capacity of Na-AP-producing neurons appear significantly different from those of graded poten...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملAdenosine inhibits GABAergic and glycinergic transmission in adult rat substantia gelatinosa neurons.
The effect of adenosine on inhibitory postsynaptic currents (IPSCs) was examined in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Adenosine reversibly reduced the amplitude of GABAergic and glycinergic electrically evoked IPSCs (eIPSCs) in a dose-dependent manner (EC50 = 14.5 and 19.1 microM, respectively). The A1 adenosine-rec...
متن کاملResponse to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina.
Most retinal ganglion cells respond only transiently, for approximately 150 msec at the onset and termination of a light flash. The responses are transient because it has been shown that bipolar-to-ganglion cell transmission is truncated after 150 msec by a feedback inhibition to bipolar cell terminals. The feedback inhibition itself must be delayed by approximately 150 msec to allow the initia...
متن کاملStaggered development of GABAergic and glycinergic transmission in the MNTB.
Maturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB). Synaptic responses at postnatal days 5-7 (P5-P7) were small, slow, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 16 شماره
صفحات -
تاریخ انتشار 1997